CERN 67-20
Theoretical Study Division
13 August 1967

ON_DETTRINATION Ox SPIN . DECAY PAR/L:TULTRS,

i
AND DENSITY iATRIX OF DIECAYING STA’.L@E‘.“B‘

N. Byers

GCGENEVA
1967

*) ritten in 1965 whilst a J.5. Cuggenheim Fellow on leave oi’ absence
from University of California at Los Angeles.

65/1316/10
p/h



©® Copyright CERN, Gendve, 1968

Propriété littéraire et scientifique réservée pour

tous les pays du thonde. Ce doctinent he peut-% -

étre reproduit ou traduit en tout ou en partie

sans lautorisation écrite du Directeur général.
du CERN, titulaire du droit d’autéur.”Dans™ "

les cas appropriés, et s’il s’agit d’utiliser le

document a des fins non commerciales, cette

autorisation sera volontiers accordée.

Le CERN ne revendique pas la propriété des
inventions brevetables et dessins ou modéles
susceptibles de dépot qui pourraient étre décrits
dans le présent document; ceux-ci peuvent étre
librement utilisés par les instituts de recherche,
les industriels et autres intéressés. Cependant,
le CERN se réserve le droit de s’opposer a
toute revendication qu’un usager pourrait faire
de la propriété scientifique ou industrielle de
toute invention et tout dessin ou modéle dé-
crits dans le présent document.

Literary and scientific copyrights reserved in
all countries of the.wotld. . This .report, or
any part of it, may not be reprinted or trans-

* lated’ ;without " written. permission of the
“Copyright holder, " the " Diréctor-General of

CERN. However, permission will be freely
granted for appropriate non-commercial use.

. If ‘any patentable invention or registrable

design is described in the report, CERN makes
no claim to property rights in it but offers it
for the free use of research institutions, manu-
facturers and others. CERN, however, may
oppose any attempt by a user to claim any
proprietary or patent rights in such inventions
or designs as may be described in the present
document.



I.
I1.
ITT.
Iv.
V.

VI.

VII.

CONTENTS

INTRODUCTION

NOTATION

THE COMPLETE ANGULAR CORRELATION FUNCTION F
ANALYSIS OF 08T GENERAL I'ORil F HAY HAVE

THE LULTIPOLE PARAIETERS

RELATION OF LULTTIPOLLE PARAMETTERS TO PRODUCTION
HMATRIX ELEIENTS AND CONSEQUENCES OF SY:RETRIES
IN THE PRODUCTICHN REACTION

ADDITIONAL INFORiMATION OBTAINABLE WITH PRODUCTION
FROLI POLARIZED TARGET

APPENDIX A: DERIVATION OF GENERAL I'ORiI OF

COMPLITE CORRELATION FUNCTION T

APPENDIX B: STATISTICAL ERROR ANALYSIS FOR EXPERI-

IENTAL DETERMINATIONS OF SPIN, DENSITY
MATRIX ELELELNTS, LTC.

APPENDIX C: PROOF OF GENERALIZED ::BERHARD-GOOD THEOREM

APPENDIX D: DETERMINATION OF PRODUCTION ALPLITUDES

FOR INTEGER SPIN

APPENDIX E: ADDITIONAL DECAY CORRELATIONS WHEN TWO

UNSTABLE PARTICLES ARE PRODUCED ARD
DETERUINATIONS OF PARITY AND SPIN OF
SECOND PARTICLE

REFERENCES

65/1316/10
p/h

ﬂ;d
[V
-

@

—
o N~ Oy

-

253

31

35

41

L3

45

L



I.

INTRODUCT ION

BExcited baryons which decay into a baryon (spin one-half) and

" a meson (spin zero) have the remerkable property that their decays are

perfect analyzers of the spin and density matrix of the initial sample.

In addition to the spin and elemcnts of the density matrix, the amplitudes

‘for the decay itself may also be obtained from the anguler distribution

65/1316/10

and polarization of the daughtef‘). In this report, we shall discuss

in detail decay scquences such as

X - A+K
L; (1)
p+'n’

where X represents a particle with spin J, and K repwcesents particles
with spins onc-half and zero, rospectively, and the decay A » p+ 7 serves
to measure the polarization of A. We shall show how angular correlations
in Eq. (1) exhibit the spin, spin orientation (density matrix), and decay
amplitudes of X.

We describe the spin orientation of X by spin multipole para=
meters (analogues of the multipole moments of a charge distribution).
These parameters provide a complete specifiication of the density matrix
of Xia. Owing to their covariance properties (they transform like spheri-
cal harmonics), they are cohvenient tools for expressing conseguences of
symnetries in the production of}(z). They are directly measurable
because the multipole moments of angular distributions in Eq. (1) are,

aside from certain coefficients, the spin multipoles of X.

For parity conserving decays, all even multipole moments may
occur in the angular distribution of A, and all odd multipole moments may
occur in the angular dis%ribution of polarization of A. = Consequently,
the complete density matrix of X may be measured. The transverse and
longitudinal polarization of A display the same odd multipoles. Their
relative magnitudeé and sign, however, depend on J and the parity of X.

Consequently, both the spin and parity of X may be measured.

p/mm



For parity violating decays, even and odd multipoles appear
in the angular distribution of A and of its longitudinal ‘;polariza’cion.
In addition, two vector functions of the transverse pdlafization may be
non-vanishing: ?Ax R ana gA— AL . ’P?A « All non-vanishing odd mui'tipoles
appear also in these functions. Consequently, there are many relations
between angular correlations and it is possible to obtain determinations
of the spin and decay parameters as well‘a,s the spin niultipole parameters

of X.

In general, the decay X » A+ K is described by two amplitudes
a and b where a is the probability amplitude for orbital angular momentum
£ =J-% and b for ¢ = J+'%%. The relative magnitudes and phase of

these amplitudes are given by the pr:trame’cers4 )

a = 2Re [a*b/la|2+ |b|2]
g =2mla*/lal®+ [b]?] ()
v = [al®- [v]21/]al®+ [b]* .

If parity is conserved, a or b is zero; thena =f = 0 and y = * 1.

(Our notation is such that the probability amplitude A /, for finding A

with helicity 1/2 is a+b, If t]sxe decay is weak, time reversal invariance
. . 5 '

gives, to lowest order in Hweak

iE)J_ya

16 4
-~ = lale e J+/2

b = bl
where 8¢ is the scattering phaée‘ shift for A~ K with orbital angular
momentum Z) Since parity conscrving decays are special cases and their
'p'ropértiesnl are so easily derived from the ge.neral case, we shall not treat
them separately. ' -

| In _‘Sc’;c’cion III, we define a Lorentz invariant angular correlation
function F for Eq. (1). It is given for X produced in rcactions with two-
and three-body final states. This definition is easily generalized to

other production recactions.

65/1316/10
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Without a large number cf events, accurate measurements of
angular correlations are difficult and a maximum likelihood fit of F
to the data may be the most reliable means of obtaining information
about parameters of intercst. In Section IV, the dependence of F on
J, 2, B, ¥, and the multipole parameters is explicitly displayed.

(The derivation of F is given in Appendix A.)

The spin multipole parameters are discussed in detail in
Sections V and VI where we relatc them directly to the density matrix,
give their symmetry propertics, and express them in terms of the S matrix
for production of X. Since they are spherical tensors with respect.to
spatial rotations in the rest frame of X, their transformafion properties
under proper Lorentz transformations arc casily ob'tainable6 « They give

a Lorentz covariant specification of the density matrix.

In Section VII, we discuss specific properties of the density
matrix of X when produced in a reaction with polafized target. In this
case, angular corrcelations between production and decay allow for dcter-

mination of the reclative parity of X.

Unless otherwise steted, we always assumc F describes only (1).
In practice, if X is a resonant state, F will contain contaminations from
non-resonant background and /or interactions between the decay products of X
and other particles in the final state. Such contaminations arc briefly

discusscd in Section VIII.

This report is mainly an account of investigations made in response
to discussions with various cxperimental groups regarding the application

)

of certain published rcsults1 .

In particular, we would like to thank Drs, H.K. Ticho, D.H. Stork,
P. Eberhard, and J.}., Shafer for stimulating and profitable discussions.
Owing to timc limitations, we arc not able %o providé herc a complete
bibliography on the litcrature, and we hopc we may have the reader's in-

dulgencc in this matter.
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IT. NOTATION

aX—>A
£ XA
YX—»A

Ay

65/1316/10
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n

n

‘spin of X;

momentum of A in rest frame of X;

spherical angles of X roferred to any sct of axes that are

chosen without rcgard to X decay;
momentum of p in rest framc of A

spherical anglcs of .]5 referred to s'pé.ce axcs obtained from

framc in which &, ¢4+ arc measurcd by Lorentz transformation

without rotation;
polarization of A;

asymmetry paramector for A » p+m as given in Ref. L)

(Cronin and Overseth);
angle between X ana -13, i.e. cos ¥ = Ao p, mcasured f‘rom-ﬁ to K;
sin 4_ sin - '
tan” = L (& (Pp)
cos z?P sin 94 - sin z?p cos &4 cos ((pp-<p1)

azimuthal angle of _13 v{hon X is choscn as polar axecs;

A
l2 _ 2
EANEEA |
£ .
21mA1/2 A4 , > cquivalent definitions to Eq,.(2);
% A
2Re A1/.A. 1/
VAR I
J

amplitude for X » A+ 7 with A holicity * %4, normalized so
that lA1/él2+ IA_1/2’2 = 1;

(a = b)/Jr|a|2+ BE , wherc a and b are defined in text;

myr tBI/f (spherical tensor referring to same space axes as 59,)s

()~ % JETTI (T o3 Y, =)



C(33L;%, -72)

Clebsch-Gordan cocfficient as given in Ref. 18);

thj’f = 8pin multipole parameter;
X = momentum of X in ce.ms of production;
2 = beam momentum in c.m. production;
8, = spherical anglos of X (cos & = u - £);
-1?1 ‘= G X ﬁ;
. noA . . >, >
- 8in ¢ = nep when target is polarized with pd u;
cos @ = %+ p/sin 93

D)0, 0,0) = o W (I)oy o= 12,
(

dwlvf') () = <IM |e _iJYﬁlI.M > = matrix element of rotation operator;

C (L)(cp,ﬁ 2)

§ (L)(q’: ?, 2)

il

- 04) [Dfe,0,9) - Do, 0, ¢>>] ;
(/2 [ D 0,9 « DE e, 0,9 |

i}

Some propertics of these functions:

o L
s NERION
2 () = (PN a0 = (FNa,(9)
3 (o) - (" oM -0y ;
Under spatial invorsions: o > 7-9, ¢ »T+¢, & > T+d
~and
CE (Po®
SE o S
65/1356/10
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THE CORRELATION FUNCTION F

The function describing the angular corrclations in Eq. (1)
will be ecallcd F, . It gives the probability for finding A cmitted in
solid angle dQA in the X rest frame, and proton cmitted in solid angle

dQP in the A rest framc. It is a Lorentsz invariant function.

If, for cxamplc, X is produccd in the rcaction K +p » X+ 7,

F is rclated to the diffcerential cross-scetion do by
do = RX_>ARA_>PF dQAdQP a , (3)

where dQ = d cos #dp is the clement of solid angle in the K p cam,

framc in which X is producecd, and

RX—>A = branching ratio for X - A+K ;

RA—>p = branching ratio for A » p+7 ;

40, = dcos 4, dp, = ‘clement of solid anglc of A emission
in X rcst frame;

dﬂp e ‘d cos z‘}P -dcpp = élomcni: of solid anglc of proton

cmission in A rcst framc.

In this casc, F may Adcpond upon the six variables ¢, ¢, z‘)A, Pps
ﬁp, cpp, and also the total cnorgy; F is indcpondent of ¢ if the target is

unpolarizcd.

If X is produccd in a rcaction with a threce-body final state,
such as K +p » X+ K%+ K+, the variables {}K and Px appear in F and the

rclation between do and F is
— ‘ !
do = RX_)ARA_)pF dQAde a0 , (3")

where dQ = d cos @ and . ond @K are spherical angles of K° cmission in
A

the K K° rost frame.

The structurc of F is given in the next scction.



IV. THE FORM O F

Since A has spin vé, and A » p+ 7 is a parity violating decay,
the angular distribution of proton cmission is lincar in the direction

cosines of ;. Thercforc, F always has thc form
=2 A '\
F = I+‘¢AI£AG D, ()

where I is proportional be the number of A emitted per unit solid angle
(in the X rest frame); Tg. (4) gives the complete dependence of F on

) The dependence of F on QA and ¢, cen be obtained by generalizaticn

SO .
b 7p
of the reasoning which lcads to Eq. (4). This is given in Appendix A.

The result is, if parity is conscrved in X dccay,

CE S
N B
L=C M=-~L
(L even)
2d L
AN e ¢ A
+ @, cos ¥ Z 2_1 ZLJDISIG)((PA’ 85 0) (5)
L:A: M:-L
(L 0dd)
2J jij . .
* Yyan (23 +1) @, sin ¥ Z ZJ zl;f (o -+ 1)]-'/2 CI\)I‘l”:)((PA’ %) 0) .
L=t  M=-L
(L 0dd)

From comparison with Eg. (4) onc secs that the first sum is an expansion
of I; +the sccond an cxpansion of the longitudinal polarization

qufA « AR - 5; and the last the contribution to F from the transverse
polarization of A, Note the appcarance of the same cxpansion coefficients
in the last two sums. This along with the factor (2J+ 1) makes unique

doterminaticns of T and yy , possible. In this case, vy, =2 1e

65/1316/10
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When parity is violated in X » A+ X, F has the form [notc that

.
Eq. (6) reduces to Eq. (5) when Gy = Pyop = 0J

} 2J-1
N M
F=(1+aya,  cos ¥) \" Z] /'Dm%)(%’ 9, @)
=0 M
(L cven)
, 2J
+ (g, + @, cos ¥) ) U
" Gy T ¥y COS L L 10 (P2 %y €
. L=1 M ,
(L odd) (6)
. 2J
AN T 94
+ (27+1) a, sin ¥ \ \ {ZM [L(L+ 1)]‘/2
A LJ - L
L=1 M
(L odd)

X [ﬁx-»A S 1511-14)(“’1&’ 18 + 1y C 5o ‘I’)J}

Heore again the terms proportional +to @, cos ¥ rcpresent the expansion of
the longitudinal polarization of A, the last sum that of the transversec

_ . 7
polarlzation, and the remaining sums arc the cxpansion of I

" The functlom:D( >, cos ‘PD/IO , sin U C( ), and sin ¥ S(L)

in Eqs. (5) and (6) are orthos'onal over the range of the variables ﬁA, @5
v, <1’ (‘ﬁWO unit spheres). Their normalization is given by that of the

DMN ‘namely

1

l:@'_ﬁl] ]dcp / dcos o j d@}D‘éﬂLq)v(w, 8, J}&%)(%ﬁ 3)"

LL’ SMM’ NN/ ?

(7)

where 8., is a Kronccker delta. Thercfore, Eq. (6) is a (gencralized)
Fouricr expansion of F,.

5/1316/10
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TFor cach valuc of L,M thore arc four indcpendent moments of F:

L) . L
<‘DI\§10)>’<OOS\PD< )> <sginV CM1

MO
and
<sinV J(m H
1’;'11
fdQA a Ff
<f> = ———f | \ (8)

(faa, deF) _
Thesc are multipole moments of I, II-")A . ﬁ, and the two vector functions
-> ~ - - Iy
1, -AL. 1P, and I x L (scc Table I).

Table I

Relation of moments of F to angular distribution I

and a.ngular distribution of polarization ﬁSA of A

(I-]'BA) o
T I-I%l\ .1 transverse
> AN - -> A
: IPA- AA -.IPA IPA x A
L,M momcnt (1) (L) (L)
(mul‘blpolc moment) | <FuMo 7 | ¢ COS\P"DMO { < sind CM’I <sind 'S

Equation (6) shows that:

i) all moments with L> 2J vanish;

A
o

ii) for L oven, non-vanishing moments occur only in I and I-ISA e A

1ii) for L oven, momonts of I and IISA' R arc rclated by

N _D(L)> = 3<cos V¥ D(L) (9)

65/1316/10
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o= 40 -

iv) for L odd, momcnts of I and IiSA « A are related by

(L) -
<‘DMO > “'jaX»A< cos ¥ MO ; (10)
v) for L odd, moments of (IP )‘trﬂnbvorSﬁ arc rolated to those of
IBA-.K by
L L
JIL+ 1) <sin¥ Cn<m). = (23+1) ¥y, <cos ‘I'Dr(ao) (11)
L A
JET+7) <sin? S( )5 = (234 1) By < COS \IIDE(m) (12)
and that
vi) ,
) * ‘
;PIT. = <DB$II€)) > for L cven (13)
o @)% porTroad .
@ 37 = 3¢ cou‘ll.DMo > for L' odd , (14)
where .
M M : '
37, = z/(2L+1) 25 .
Equations (9)+to (I4) arc summarizcd in Tablc II.
Tablc IT
Valuc of moments with L< 2J according
to Eq. (6) ( gl = ol(on+1) zg)
L even L cdd
(L), * | M o w
<Dy 31 A n ST,
(L), * M L
3¢ cos ¥ Dy %sp 23T, % 31
. L) * M 4
3< sinV¥ CISH)> 0 (27+ 1) Tyon aA;LNLELM;
. * M
3< sinV¥ 515”) 0 (27+ 1) s aA}L/ﬁ/LZLJr 1)

65/1316
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Notc that Tablc II contcins and is a generalization of well-
known relations; for eoxample, for L = 0 thc second row gives the well-
known relation’

Bgan Op = 3<cos¥> .

Sincc the &, B, ¥ parameters satisfy

2 2 2 _
Gpoh * Byop T Yxop =1

one has an additional constraint on moments with L odd,

| (e aing OO s <oy S@F)
(23+1)2 ;L(L'H)(_( smeM,, <Smw$M“ >) ) (15)

(L)
(1~ aX—>A2) < cos \I!PMO >

Therefore, if therc is a sufficicnt number N of cvents to obta:.n averagesa)
dlrcctly from the data, and at lcast onc odd multipole (}L with L odd) is .
appreciable, the spin of X may bc determined using Eq. (15). ~Since Eq. (15)
is a ratlo s tho error associated with such an oxperimental determlnatlon

of J is not G-auss:l.an distributed. We discuss this in detail in Appendix B.

: Fere we wish to point out that, in principle, J, LY ﬁXéA’ Yyap? and

all the 21]\:&‘ nay be obtained from F. Tablc II along with Eq. (15) shows
this, '

The zl\]f describe angular correlations botween production and

dccay of X. They contain the depcndence of F on the production angles
¢ and ¢. (fhey will also depend on the total cnergy and, in general,

© other variables associated with production.) From the well-known trans-

65/1316/10
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formation propertics of the -Dlgul\; functionsg) and the invariance of F
(a scalar function), it follows that the zlLI[ transform like spherical

harmonics under spatial rotations in the X rest frame, na.melyio :

R(a,p,v) 2, = z g (L) (@, 8, %) » (16)

MI
where a, B, v are the Euler angles of the rotation. The zM

L
to the spin multipolc parameters of X and are discussed in detail in ths

are proportional

next sections.
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V. THE MULTIPOLE PARAMETERS ZM

55/1316/10
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L

14

The paramecters Zy describe the spin orientation of X. Owing
to their role in F, however, they arc all proportional to the Clebsch-Gordan
cocfficient C(JJL; %, - %), i.c.

z% = mJI,t% s (17)
where . »
Ry = (- e oo Yo, - ') (18)

and f% are the spin multipole parametcrs of X, In terms of the spin
density matrix p of X, ] arc defined by tho oxpansion

p = (23+ 1)1 Z (2L+1)'tILV[* Tl]\f , (19)
L,M

where T% are polynomials of degrce L in the spin matrices of X, formed
from components of spin as spherical harmonics are formed from components

of a unit vector. The T% are trace-orthogonal, and normalized such that

IS '
Trace (T]I/‘I T%,') =80, SMM,(2J+ 1)/(2L+1) ; (20)
[with this normalization, T = SzA/JZJ+-1$ 11).] In a reproscntation

wherc S; is diagonal (diagonal clement m), the matrix clements of T% arec

Clebsch~-Gordan coefficients, namely

L

<TM> m' = CG(JLJ; o'M): n = ol +M .‘ (21)

From Egs. (19) and (20), one sces that

# = Traco <p T]Ivf> . (22)
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Table ITT

Density matrix for J= 1/z in terms of

multipole paramcters zy,

J=1%

e
.t )

-%

ZOO + z10

+27 /2
p ="k

+1

-zt 42

ZOO - Z1O

Table IV

Density matrix for J= 3/2 in tcrms of

nultipole parametcrs zll\‘f

J ="k

%
p=p and when Sz =

: 1 - -1 -12 -2 -2 /10 20
28+ 3z~ 220-3 28 211~/z-22 2~ 23 3 - Z2 (2=~ 23 [3:

20+ 20 + 120 + 2
Lp =

24/=2=z.,_1+72?z§1

9 0 o 0 - -1 2 =1
Z2o=2z1 + Z2 - 25  +,/6 21‘-!-25/3 22 =3 Z3

0 0 o,1 .o
Zo - 324 =22 "‘3 z3

65/1316/10
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Sincc p is Hermitian, and

it M, -M
T = (<)Mt (23)
the ‘b% satisfy
"
M M, -M
tL = (-) tL . (2&')

Therefore, the 'b% yicld a sct of (2J+ 1)? rcal numbers which completoly
specify p.

Under spatial rotations (in the rest frame of X), the matrices

TlLﬂ transform like the components of spherical tensors, namely

(3) (3) * : (L)
z [Tlg rmn'—DmP (a: B, Y).qul (a, B, Y) = ; [Tl]é’[ :Ipq:DM'M(a, p.'Y) .

m,m’

(25)

where a, 8, ¥ are the Euler angles of thc rotation. [Notc that sinco P
is scalar, Eq. (16) follows from Eqs. (22) and (25).]

The 'l;I% obtain their dircetional properties from the production

of X; for example, if X is produccd in the reaction
T+p > X+K ' (26)

with unpolarized target, the tl‘I}f

components of the ingoing and outgoing momenta (in the c.m. frame).

arc spherical tcnsors compesed from

If parity is conscrved in the production, all ’clg are ;nv@iant:;,i

against space inversions, since they are averages of spin operators.

Independently of the production mechanism, the zlg obey certain

restrictions owing to general propertics of p. We shall give some of

. thesc here. For this purposc, it is convenicent to normalize p such that

5/1316/10
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Trace p = 13 then we have t¢ = 1 and the diagonal elcments of p arc pro-
babilities. Since thesc nust lic betwecen zcro and one, we have
2J ,
-1 < Z (2L+ 1) ¢c(JLJ; w’0) t%s 2J for all m’ . (27)
L=1



- 15 =

In addition, %the condition that Trace p® < 1 yields

2J

NN (2L+1)|t l <27 . (28)

[ L

L=1 M
As was pointed out some years ago by Lee and Yanga), these restrictions
allow for a determination of a lower bound for J. When p represents an
incoherent superposition of Q pure states (e.g., if X is produced in
7+ p » X+ K with unpolarized target), and Q< 2J+ 1, not all t% may vanish.
Capps' generalizationl of the Eberhard-Good theorem Q Trace p?21 (the
proof of this theorem is given in Appendix C) yields

2J
QZ Z (2L+1)|t1\£[| 227+1-9Q . (29)
L= M .

The range of each t% is bounded by Eq. (22) and the fact that
the eigenvalues of p are less than or equal to one. So, for the diagonal

matrices Ti, one has

minimum eigenvalue of T°S_tiilnaximum eigenvalue of Ti . (30)

For M # 0, one may form the Hermitian matrices

LHED-EEE-T). o

and gﬁ for the eigenvalues of R and I, one has

H=

and using the notation r

(32)

65/1316/10

p/mm



- 16 .~

Owing to restrictions such as Egs. (27) and (28), the t% do not vary.
independently over these ranges; they cannot simultaneously attain

the maximal magnitudes quoted above.

Additional restrictions’ have been given by Henry and
de Rafaele’) and Ademollo and Gatto' ).

VI. CONSEQUENCES OF SYMMETRIES IN THE PRODUCTION PROCESS AND THE RELATION
OF THE MULTIPOLE PARAMETERS TO PRODUCTION MATRIX ELEMENTS

Consequences of space-time symmetries in the production of X

may be deduced with ease from Eq. (16). We shall now give:é6me examples.

If X is produced in a two-body reaction like Eq; (26) with
unpolarized target, many z% vanish for forward and backward productions,
since for ¢ = 0 or m, the system has axial symmetry about the beam direc-
tion Gi.  Therefore, the z% must be symmetric with respect to rotations
about (. Taking the beam direction as polar axis in the rest frame of X,
one has

zg =0 for M £ 0 when ¢ = 0 or m; (polar axis i) . (33)
In addition, parity conservation in Eq. (26) gives t% which are

invariant against spatial inversions and then it follows that

z% = 0 for L odd when ¢ = 0 or m; (34)

.
this follows because the ZM must be symmetric with respect to rotations

» L
of 180° about any axis perpendicular to U, andujCJQﬁ?(O,ng 0) = (-)L M S gt
The relation (34) is the generalization of the well-known fact that, owing

to parity conservation, polarizations [L = 1] vanish in the forward and

-backward directions.

Another example of the use of Zq. (16) to deduce restrictions

on the zM is the derivation of the "checkerboard" theorem of Cappsi). Ir

L
parity is conserved in Eq. (26), the collection of X (at any angle) has the
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symmetry of spatial inversion followed by rotation of 180° about the

normal fi to the production plane12). Consequently, the z% must be

invariant against rotations of 180° about i, and with fi as polar axis,

Eq. (16) yields o1 zﬁ = z%. Thus, one has
z% = 0 for M odd (polar axis &) . (35)

Referring to Eq. (19), one sees that, in the representation Eq. (21),
p must be of the form of a checkerboard with zero and (possibly) non-zero
entries when Bq. (35) holds.

When X is prcduced in weak interactions, one may deduce restric-
P )

tions on the z% owing to time reversal invariance of H If inter-

weak®
actions between the particles in the final state of the production reaction

g One hes (see Section VI)

Mo~ = L M - >
%) = ()F -5, - | - (36)
when one sums over the spins, etc., of the other particlés in the final

state (in this case, there are only two vectors upon which the ZM

Lcan

.depend ~ the: 1n01dent beam direction u, and X) IP = ux X is taken

as polar ax1s and Lq. (16) is evaluated for a rotatlon of 180° about n

(since then & » -u and X » -X), one has

AMar M

M, - >
zg,(-uy -X) = o (8, X) (37)
and thus; the result that
z% = 0 when L+ M is odd (polar axis n) . (38)

In parégbular, for L = 1 and a two-body production reaction, this result

65/1316/10

states that the component of the polarization vector of X along the normal

to the production plane must vanish13 .
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The above restrﬂ ctlons on mul“clpolu. parameters -owing:. to the
productlon symmotrles may be gonoraln_zed ko) ’chree—body final sta‘ces. :

For I‘OaCblOI’lu ln.ke

K +p > X+K+K (3')

the zi{ depend upon 8K’ P @8 well as X production angles. We define

z‘}K, :pK as the spherical angles of K° production measured in the rest

. framec of x° K s which is obitained from ‘Lho X rest frame by a Lorentz

transformation without rotation along [the momentum of X in the c.m, of

‘Eq. (5 )] Tho goneralizations of Eqs. (33) to (35) may be expressed
in torms of z (L',u )dof‘lnc,d by (dﬂ.K d cos & dtpK)

K

Z%(LI.’MI) - / &y = L 1% )(‘pK' Ores 0) . - (39)

"Slncop( )* (9,9, 0) = 4/M728+ 1) % (9, @), corrcsponding to Eq, (33)

is the relation

(lm) L (2+1) ”(L' w)DM,O @ 030 00 - (10)

'rl I{I

The goneralizz;’cior;'of Qe (35) is

zi'{(t,m) = 0 when £+m+M is odd (polar;a;'cis along fi) - (41)

. 8imilarly for Eq. (33), onc has

2(t,m) > 0 a8 9> 0 orm, forMsm £ 0 (poler axis along 8)  (42)

and Whveh'.pdi'ity is conscrved,

65/1316/10
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To show explicitly the relation of the z} to production
S-matrix elements, for simplicity, we first give the relations when X is
produced in a two-body rcaction where in the initial and in the final state
only one particle has spin; j and J, respectively. In this case, there are
(25+1) (23+ 1) helicity amplitudes'® fo;)\(ﬁ,@). For discussing the spin
orientation of X, however, the canonical spin representation15 is more
convenient. In this representation, the rclativistic S matrix elements
are given in terms of the projection of spin of the particles along, for
example, thc normal #i Yo the production plané%. Since cross-sections, ete.,
depend on the azimuthal production anglc ¢ only when the target is polarized,
we shall use amplitudes which are not explicit functions of ¢; they arc

rclated to helicity amplitudes by °

S 20(? D(J)D(J) 7\X;)\(,&J,(P) , (1)

xx,x

whore m and o arc the projections of the spins along i and the arguments

of tho_Z) functions arc such that they rotate space axes (in the rest frame
of each particlc) from the helicity frame (z axis along c.m, momemtum of
particle, y along #i) to z axis along fi and x axis along thc c.m. momentum of
the particle. The normalization is such that the total cross-scction for

production with unpolarized target is

1

Op = 271/ d cos ¢ Z |sm;a|2/ (25+1) . (45)

-1 m,o

The density matrix (p) for productions with unpolarized targets
(sce next scetion for discussien of productions from polarized targets),

is given by

\/i

= ) Sm;a' s;‘l,;a/ (25+1) . (46)

04
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From the transformation propertics of,.D rgf) one sces that
the analogue of Eq. (48) is

séﬁza(ﬁ) } n(_)J—p+8-m-j+a Séﬁ?a(ﬁ) . o (55)

We shall use this rclation in thc next scction where we shall show how

for Eq. (50) n may be mecasurcd.
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VII., POLARIZED TARGETS

In this scction, wc shall assumc the incident particles A 'have
spin 0, the target particles p have spin ‘£, and the polarization of the

target P is normal to the boam dircction .

Corresponding to the canonical spin recpresontation uscd in the
previous soc‘tn.on, the target polarization is doscribed by the dons:.ty

matrix p where
p(l) = 1/2(1 -P sin spo;’3'+ P cos ¢o2) (56)

wheroe 0, are usual Pauli spin metrices and ¢ is the az:.muthal angle of X

measured in the c.m from P in a right-hand sense about G; i.c. s

-
-Psing=14-P
(57)
Pcos ¢ = X+P/sin® . :
In placc of Bq. (1;6), onc has now
5ot (58)
and the matrix elements have the form
by =8P sined ,+Pcosec ., (59)
where
2 *
1
S = /2<Sm;+ Sm’;+ Sm; Sm’; )
oy ¢ 3
bmm’ - /9'<Sm;+ S'm’ s+ -Sm;- Sm’ 3= : (60)

(Note that onc may solve for all the production amplitudes given the
matrices a and b and onc matrix element of c. ) The a matrix gives the

angular corrclations [zL(P O)] onc measures with unpolarized target;

65/1316/10

p/nm



-2l -

the b matrix the right-left asymmetry of these corrclations, and c¢ the

. M
right is the avgrage of ar, for all cvents

produced to the right looking down stream along the incident bcam with

<t1\1/£ >righ‘t ) <JCII/f >1cft i <%> g bg (6‘1)
(5 )~ (% o~ 67 4 ©

up~-down asymmctry; i.c., if (zI\Ll[)

>
P up

and, similarly,

where [sec Eq. (21)]

M M M M
by = Trace <b TL) and ¢ = Trace <°TL> - (63)

If parity is conserved, e:‘rt;her'ser or §__ vanishes [see Eq. (48)].
In this casc, the only ncw information the b matrix contains is the relative
parity 7.

The relative parity n may be determined with polarized target
because a polarized target always induccs a right-left asymmetric spin
oricntation of X whosc sign yields 1. To sec this, notc that onc has,
from Egs. (60) and (48)

o = n Trace ayrih s (64)
L L
where the diagonal matrix Y has elcments

Y, = (-)""s , . (65)

mm mm

Since any (2J+1) x (2J+ 1) matrix can be cxpanded as a sum of Tlé matrices,

one has, remcmbering that (Tl\ij)mm’ =0 for m £ ' +M,

YT]‘I’f = Z (2K + 1) ’yLM;K TI;"{ , (66)

X
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With

= (29+1)7" Trace (YTM : K"L > . 0 (e7)

1M K L

Now since Y ' = Y, Eq. (66) gives

O N M
Tl\g =/, (2K+ 1) ypy,x TTx
K
and onc obtains
M | M
a, (2K+ 1) V1M K b . (68)

=[]

. This shows that, for cach non-vanishing moment obtaincd with unpolarized
target, therc is a corresponding right-left asymmetric spin orientation
when polarized target is used: in every case there will be some right-left

asymmetric spin orientation, since for L = M = 0 Bq. (68) gives

5 (g—g-)m - Z (28+1) ¥ % (69)
K .

or, using Eq. (61),

" ( % >P=0 i E EK: (prcx ‘1) yK[< o>right - <t§:>1oft] (7o)

where

Vg = (25+ 1)~ T>race (YT%) = (23+1)™" Z (-)J"m C(JKI;mo) . (T71)

(Notc that g = 0 for K+ 2J oddo.) When X » A+K, the t% with K odd are
moments of A polarization. Thereforc, one sees that the A will be right-

left asymmetrically polarized when X is produced with a polarized target.
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In torms of the angular corrclation function F, onc has, from Egs. (70)

and (14)
i
=g (> ane = < 210et) - (2
thrc19
K
=;}V (284 1)° (/i) oos 2.0 Doy 8,0 . (73)
K

Equation (70) is the gencralization for J> 4 of the well-known

rolation®®’ for J = ' which statcs that the right-loft asymmetry of
polarization of X produccd with polarized target yiclds n,

If some spln oricntation is found when X is producod with un-
polarlzcd target, then Eq. (68) with L # 0, may also be used to obtain 7.,

In particular, onc may usc the 1anrtcd form
Z (2K+ 1) 3y op (74)

which can bc obtained dircetly from EQS.-(64) and (66). This gives thc
right-lcft asymmetry in number of X produced with polarized target, namecly

N, -N

R L_,2_ kL
N+ N MP(<E > oy * T > 0pe) =5 P < >p g (75)

R "L

and is the gencralization for J2 '4 of the relation between the polari-
zation of X when produccd with unpolarized target and the right-left
asynmetry in thv nunber of X producod with polarized. target.

Whon parity is conscrvnd in thec production roactlon, the samec

considerations as lcad to Eq. (35) applicd to Eq. (59) yicld thc restrictions

0 whon M is odd (polar axis along fi)

0 when M is cven (polar axis along 4i).

o
1
o

=
i

i

€5/1316/10
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For ncutrino rcactions with polarized target, BEq. (59) and

similar considcrations as lcd to Bq. (37) yicld

0 when L+ M is odd (polar axis along #)
MM (77)

0 when L+ M is oven (polar axis along i)

o’
i}
Q
il

‘when HW is timc revorsal invariant.

For forward or backward productions with a polarizcd targot,
onc may choosc as polar axis fi any normal to {i; then the z}]f also have
the form (59) , nancly

M

M M =2 . M = . A
zL_aL+P-nbL+P-nxucL . (78)
. o PO M, =2 .
A rotation of axcs 180° about O yiclds zL(—P) so since
M M M
Ry(r) = (P 1 (79)
onc has
I+M M,z M, =
(- By - g
and
r
Mo 0 for L+ M odd (poler axis | )
(80)
b]é = 11[ = 0 for L+ M cven (polar exis | {)
when

29:00]:'17.

Similarly from a 90° rotation about @, one may obtain cquations relating
M
by,
vanishing a, b, c.)

te oi/[ . (Arbitrary rotations about G yield restrictions on M for non-

» . 3
Parity conscrvation requircs, taking #i along P and considering

a rotation of 180° about ?, z:lé = 0 for M odd when ¢ = 0 or w,
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The matrix c depends  upon the relative phases of Sm,+ and Sm" .
b e
If a and b arc known, ¢ yiclds only onc ncw paramctcr. To scc this

explicitly, first consider thc casc of parity comscrvation.  Then, for

fixed m, either Sm'+ or S e vanishcs.  For cxamplc, if n = + 1, SJ. ’
Ly n;- T
SJ 1540 etc. vanish and the natrix clononts of a give IS ! iS .~|,

otc., the r01cu1ve phascs of all anplitudes with o = + A, and tho ;elativc

phascs of all amplitudes with ¢ = - ﬂé. Thus, aside fron an ovcr=-all phase,

all S .q OFC determinced if in addition onc rclative phasc such as
;& &

arg}SJ.+ SJ 1. {: X is known. Thc nultipole paramctors of ¢ depond on X
’ =ts=

end a in a very simplc way. If, for cxample, the two diagonal clements

of a, a.. and a arc differcnt from zcro, from Eq. (60) [and Eq. (48)]

JJ J-1,J-1
one sces that

i . iX/. M |
o, = - ine <%TL %)J-1 /Q/QJJaU;d, 34 (81)
where
* .
X = arg SJ;+ SJ_1;_ ifn =+ j
¥ £ 1
= arg SJ;_ SJ_1;+ ian=- .

Conscquently, if a is known, any non-vanishing up~down asymmectry of F
suffices to determine X. [Owing to Eg. (76), angular corrclations which

exhibit an up-down asymmetry depcend upon @A.]

For parity violation in production of X, both a and b arc neceded
to determine the magnitudes of the production amplitudces, and the rclative
phases of amplitudes with @ = + 4 and thosc with @ = - 4.  Assuming

a and b arc known, onc has

*
=a _, +b
my+ w’ o+ jninkd jning ' :
. | o (82)
5 S._=a ., - ' ' ' '
ny- o'~ iy ain)

and ¢ is nocded to obtain tho relative phasc of 5. and S '+. If SJ,+
)

and S;,  gre both differont from zoro, let X; = arg?S % If X_ is
J Js+ J, J
known, all relative- phases. arc.determined. Using Eq. (60) one sees that

65/1316/10
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iXJ[( b) Tp(a+b)] iXJ“(wb) - 1)]
CM 1 e a=- plat gg-¢ Lla T (a- P -

F (a1 . \’
V (a J)JJ (a b'JJ

gy SJ;-;— or SJ;_ is zero, of coursc, onc would choosc for X the rolative
phasc of somc other pair and obtain Eq. (83) with appropriatcly modificd
indices. For cxample, using J and J- 1 onc obtains the generalization
of Eq. (81).] In this casc also, only one non-vanishing up-down angular
correclation asyrmetry suffices to complcte the dotormination of the Sm; o
natrix. » _

Notc that, owing to Eq. (64), thorc arc many rclations [like
Eq. (72) and Eq. (75)] that relate angular corrclations with P=0 to
asymnetric angular correlations whon P# 0. . In gencral, thesc arc J

dependent and may be used to determine J °'7.

S3/1516/10
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APPENDIX A

DERTVATION OF GENERAL FORM OF
COHPLETE CORRELATION -UNCTION F

‘Derivation of Egs. (5) and (6)24):

We shall usc helicity sta’cesu) to describo the A- 7 system.
The density matrix for A in the usual notation is

£

Pt o= (;l+§--o’) (A.1)

N

where B = -ﬁA. To define symbols, we cvaluate pf using for G ‘the usual

~Pauli spinors

/T+1 Py J2IP_ .
f .
p ==1§ s (4.2)
-«/EIP_H I-I P

where Po= PZ’ ﬁ Pt1 = ;(PXi‘ iPY) and the componcnts of P rofor to any
co-ordinate system S, which is spcecificd independently of the decay vector.
Howover', if Eq. (A.1) is evaluated in the helicity state representation,
the components of P in Eq. (A.2) refer to a co-ordinate systenm S’. It is
obtaincd by rotating S through the Euler angles (¢ A2 ﬁA, 0) where z‘?A and

¢, arc the spherical anglcs of X moasurcd in S. Horc we shall usc heli-
city statcs which diffor from thosc defincd in Ref. 14) by the phaso

factor eiM) [see G.C. Wick, Ann.Phys. 18, 65 (1962)].  In this helicity

" representation
I+IP-A /2P
£ 1
CORVEEE (4.3)
AN 2 s
-2 P, I-IP-A
where .
*
P_==P (A.Y)
and

P, = Z oSNNS C(a.5)

1
D) xgm’)((?i&’ 9,5 0) is the rotation matrix clement for the rotation of axes § » 8'.
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The final state's density pf is related to thec density matrix
of X by 5 IR

fosest (a8

wherc § is the transition matrix for X » A+7., In the X rost frane,
the transition from a state with quantun numbers JM to a Awr state with

helicity A is given ‘by14
F2J+1 J), N A
\/ _D I({[')\,) (o, 0’ 0) . (A.?)

whoro A, is dofincd in Scotion ITI. Substituting Bq. (A.7) in Bq. (A.6)
and using Eqs. (19) and. (21), one obtains

pix, =5%L Z (2L+ 1) t C (JLJ ma")DDJ)_DISIf%, . (4.8)

Lyu"
B35

4)»

Using the rola’cionf “

D (")(cp,ﬁ 0) _)ﬂ, @,a,' 0)
Z C(JJe M—M’) C(JJe A= x’)( )WT ")‘_Dlgzgy Y (<P,t9 o) ,H(-jA;-9)

" and the rolation (M/ +M” = M)

.
C (amasw wr) = ()T 2L O (gamu, -w)

and the orthogonality of thc Clebsch-Gordan cocfficicnts, one obtains

(f) (= )J—-?\. < A’)\A}\. >af2?:_ Z WC(JJL’ -7\.')‘!: 316[13)\. o

P =

L,M (4.10)
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| , N B ‘
Notc that in Egs. (A.10), (A.11) and (A’B)’-Dﬁsm) 'Dw(m (@A, Oy 0).
Using Bgs. (A.3), {A.10) and (17) and %hc rcla’ions

C (3%, %) = (<325 C(aams-%,%)

e = [ |- Al

onc obtains

I? A :01(/)/ -PSE./Z)_% = aX—>A T\ ZILE DIS{I(;) + Z D(L) (Ac11)

[
L(cven) L(odd)
M M
since
W M _-M (L)* M (L) |
- (o - / = (=)
z, = (- 2 a’ndDMO D o -
For the off dia al elcment £ usi
r 01 men p1/2’__1/2 S1ing
%
BX*A =2 In Ai/z-A_‘l/a
*
YX"’A = 2 Re A1/2A_1/2
and

JEE+ 1) C (331;'%%) = (2J+1) C (3313'% ,-'%) when L is odd (A.12)

onc has
£ 23+ : 1=t L
Py = - B gyt 4y) ) [ 01T DEX L )
L,M
Thus p(f) is given in terms of z?é With BEq. (4.2), onc may evaluate

IPA p from Eqs. (4.13) and (4.11) as using

8,08 = coo 3o -o5) ) st 0oy 08y o7 ) tat

where ¥ and ¢, dofined in Scction III, arc sphorical angles of P in the
co-ordinate system of Eq. (A.2). Incorporating thc factors o3 in Eq. (4.1L4)
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4 * '
into the ;I)éﬁ) in Bq. (4.13) and using the rclation

"DI\SII';) ((PA’ Ips (b)* =" (-)M-—D_ _%{2_1 ((PA" 9 2) (A.15)

E3
and zlg = (-)M Z;JM, onc obtains for F = I+ aAI-ISA-ﬁ the form (6) and (5)

whon ay . = ﬁx_)A = 0.
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APPENDIX B

STATTSTICAL ERROR ANALYSTS 'L EXPERINENTAL
DETERMINATIONS OF SPIN, DENSITY MATRIX ELEMENTS, ETC, '

The structurce of ¥ shows that J, zhﬁ

determined.  Generally maximum likelihood techniques can be used to obtain

and o, B, ¥ may be completely

"best" values. However, if the number of events N is sufficiently large,
the right-hand side of Eq. (8) may be evaluated by taking the indicated
average in the data®>® ?) 3

let

i.c., for any (real) function fa(ﬁA, ¢ps ¥s ?),

3.) (B.1)

_ q
for = Lo (Ppgr 9030 ¥i0 85

oL

th
w L, U ‘the- es in A i t.
here ﬁ"i’(p”i’ Ve @i are the observed angles in the i~ even If there

is no systematic error, one may take zd = N and

N N

@l O [0

i=1 i=1

fai‘IZ . (5.2)

[ =

-
il
-

However, if one needs to evaluate a set of moments from one set of data,

the associated errors arc correlated. Taking

N
7N\ p
),
4 . . i=1

one may estimate errors by evaluating the crror matrix € whose clements arc

N N

SRONRENO DI

[We,  is the estimated error given in Bq. (B.2)].
S ao A

“If ay,, and J arc known and ay, A';é 0, one need only evaluate
the < D ls[l(‘))) to obtain the X density matrix. . In this case, the angular

distribution I of A yields the entire density matrix of X, and an over=-all
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measure of the errcr can be obtained from the function I’ where

1= ZEJ (2n+ 1) <_2§’£g §8)<@A’ )5 0) - (Bok)
L3

=

To do this, one may compute VN times the ratio of the deviation of the

/s

logarithm of the likelihood function DC to its variance; i.e.,

'\/ (<. in ;CI:GZ— ino&)a (8.5)

where

N

/7 ——-.—\
< Inld > :<1%T>\’ in I!
/[ +

1=1
m L - <£;> [ 4, I’ T
N FR———
o? () (ZnI' - in {)2 .
ZLJ

i=

If the moments of I are accuratcely given by taking
] (L
< DNIO Y\ :)I‘O ((‘pAl)'U/\' E] 0) 3 (B.6)

Eq. (B.5) will be small comparcd to onc.
In the following, we shall assume N is sufficiently large and
averages like Eq. (B.6) are good mcasures of thc moments of F.

If J and the decay paramcters arc to be determined, one necds to
mecasurc the A polarization. We discuss the casec a=f8=0 (parity conscrva-
tion in X decay) first.  In this case, Yyop = % 1 and one has, for all
odd values of L and -LSMSL,

Yo A(2J+1)< cos \PD\(/I%) = JL(L+ 1)< sin ¥ C l‘% H (B.7)
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Eq.(B,7) is non-trivial only when the corresponding z%

Since Yesp = 2 * 1, it can be determined from Eq. (B.7) using usuel methods

is appreciable.

[see Ref., 25)]. However, the experimental value of J obtained using

relations (B.7) needs some further discussion.

The quantity 2J+ 1 derived from data will not be an integer,
in general. - A determination of J from this data may be obtained from
consideration of the function PJ(A) where PJ(A)‘dA is the probablllty of
finding the value A in the interval dA for 2J+ 1 given that the spin is J.
It depends also on the values found for <f& > in the experﬁnent’and their

" associated errors.

We now outllno a method for caloulatlng P (A) For definiteness,
first consider the relation (B.7) with M = 0 [all quantlties in Bq. (B.7)
are'réaij éndA&SSHme Yy, 18 known. ILet BEq. (B.7) be rgpresented By the
equation v . - o
y = Ax - o © (B.8)

where 'y and x are the cexperimental values of Jitfi“TT X <Slnq‘(:oo

and < cos‘P,Z) L) 0 > respectively. Assume thc error in y and x is Gaussian
distributed wit h standard deviations oy and ox as given in Eq. (B.2). [For
simplicity, we assume x and y may take dﬁbany values between - © and + ® .,
Actually they are restricted by relations like (27), (28) and (32).] We shall
ignore error correlaf:ons and “then show how the result may be gencralized

to take correlated errors into account.

Thc error dlc*nﬂnﬂuons in x and y arc described by

'/ - (x-x0)? 207

‘"3
/'\
T
<
“u

[Zﬂo )
o (8.9)

gy G

Owing to Eq, (B 7), one eypccts'that cg (2J4-1) Gx;. Thergfdré;jwp'f_
calculate P (A) in terms of J, Xo, 0x and Ug with:

€5/1 %1 6/10A
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®zyw@@m<@zm%@®i

o+ [®)

'T}ie joint probability of finding x and A in the intervals dx and dA is
PJ(A,X) dA dx where PJ<A,X) = PL<X) PT(A,X). It then follows from
Eq. (B.9) that

~]
= L J

w

e

5

e
/\
™
e
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P;(4) = (2mos oy)™" / ax x o /2 [b=x0)® /o + (hx=(20+M)x0)" fof ] (B.11)

- OO

Carrying out the integration, onc finds

P (A) EY E/w( (iJ;”f)g’/I:) - (23+1-A)2x8 /2 (o +A20x2)' (B.12)

Note how A appears in the argument of the exponential, as a result PJ(A)
is skewed about its maximum, The average value of A in PJ(A) tends to
be larger than 2J + 1 while, as shown by Eq. (B.16), the maximum tends to
ocour st A < 27 + 1, Clearly, if o2 is small PJ(A) is Gaussian with
standard deviation oy/xo. However, if o% is appreciable compared with
x&, the skewed nature of PJ(A) may be important, In this case, the
various values of PJ(A) for A = value given by Eq. (B.8) and

= Y%, %, %, etc, should be calculated,

To take error-correlations into account, one may easily generalize
Eq. (B.11). Let € be the 2 x 2 error matrix (B.3) ard, using matrix

notations,
a = (A} j <2J+1> :xGL-xo] (B.13)
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one may writc Bg. (B.11) as

PJ(A) = <:-17% / ax x o~ ~ (ve™v) 3 (B-l“k)

. -1 .
with € = inverse of €, and

1

i -1 s b = (2044-4)2xE /2 (@€ @) dot
P(4) <lxo| 7;) (ae ])(Q(—: ) o ( )?x8 [2(ae ¢

T

(B.15)

with det € = detecrminant of €.

When terms of order (€qp/xé)? are neglected, the maximum of
Eq. (B«15) occurs at

A= (2J+1)[ - f;; {em-. (2J+1)_‘ exg:ﬂ . (B.16)

The skewness of PJ(A) is considerablc when - ¢n PJ(A) x (x8/exx).

If parity is violatec’i in X decéy, one must usc relations like

Eci. (15) to determine Jze). In this case onc has a reclation of the form
¥? = A% %P (B.57)
where (taking M = 0)
x* = L(L+1) [<sinV 5(5’1) > + <sin ¥ C(g"l) >2 ] (B.18)
and if Oyon is not alrcady known,
v = (1=<fo >%) < cos \PD(OLO) >Z (B.19)

where <fg > = (B/aA) < cos¥>. Thus from Eq. (B«17) a measurcd value A
of 27+ 1 may be obtained. To cstimate the associated crror, an crror
matrix € for x and y can be calculated from Eq. (B.3). Letting

= (1=-<Py >3) <3>3, ¥ = <Py >°+ <fy >®, onc has:
3 3
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(B.20)

x 2 <Py 52 §(1-<F6>2) €35 -2(1 =< >%) <fo > €03 <F35>

[t}

€xx

+ <f3 >2 <fg >2 6'00}

assuming normal distributions for the crrors in <fq >. Then Eq. (Be15)

is a recasonable cstimatc of PJ(A) when of /x¢ <1 and

03;2

(A(2F+ 1) of N

e X6
Oy UU"‘AOX)

Actually, the PJ(A) for Eq. (B.17) differs from Eq. (B,15) owing to the

restrictions ¥ 20, y¥720, A> 0. Thesc give risc to a different behaviour

for PJ(A) ncar A = 0, but do not change PJ(A) appreciablybwhen A is of

order 2J+ 1,

An over-all check on the reliability of the valucs used for < fg >
can be made by computing Bq. (B.5) for the complete function F,



65/1316/10

p/mn

- 41 -

APPENDIX G

PROOF OF GENERALIZED ZBIRHARD-GOOD THEORELL

When p describes an incohcrent mixturc of Q pure states,

2 ;
p = / p; with Traco pi2 = (Tracc pi) (c.1)
ya
i=1
and
Trace p° = X_\ Trace p2 + 2 T Trace p; P, . (C.2)
L + LJ J
i 1<

Since the diagonal elements of p; arc positive (or zero), Trace pipj 20

and

Trace p° 2 y Trace p; . (C.3)
-
i
The minimum the right-hand side of Eq.(C.3) may attain, consistent with
Eq. (C.1),is when Tracc Py = (1/Q) Trace p for all i. Therefore, one

has

Q Trace p° 2 (Trace p)? . (Culy)
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ACPENDIX

DETERMINATION CF PLOLUCKION AMPLITURES
TOR INTEGER SPLil —

. . . . . +
Consider a boson of spin ¢ which decays into K and K°-two

(¢)

spin zero particles. Lot the production matrix clements be Sm 3 then

the angular distribution of K" is given by
S s s DO st | .
£(9gs o) = ‘ ) B AT D o, o) (0.1)
m

and, using Eq. (52) with

R ,
2e'1 e+e!+L /[ 2Le! L=8! M -/
<mm'fzvl> = ) <m°-Mm'> = (-) tlae+4] 0 c(eernym’) , (D.2)

onc has
e N Mo~ (L) ]
f(ﬂK3 (PK) - L_, ZL M0 (cpK, 0K’ O) (D'j)
L,M
where
M £ - M _ M
Zp = (=) J(2L+1)(2e+ 1) c(eeL;00) t = m,p tp (Do)
N :
[note the cocfficicnt of tﬁ may bc obtained from Eq. (18) replacing 'A by
zero| and f% is given by Eq. (22)
L L)*
Pom/ = Sé ) Sé') d (DJ5)

Since C(¢¢L;00) vanishes for I odd, only thosc t%

in this dccay. Knowledge of the cven multipole is, in general, sufficicnt

to detcrmine the production amplitudces Ség). To sce this, notc that

with L even arc obscrvablc

65/1316/10
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C(eLe;mo0) = C(ZLZ;-mO) for cven L. Thercfore, onc has, using Eq. (19),

2¢ _
2 2 0
lsml +-|s_m|2 = < T > zg: (2L+1) c(eLe;mo) v . (D.6)

L=0
- (L cven)
Tho fM with M £ 0 will yicld rclative magnitudes and phases. [INote

L .
conscquences of theoroms such as Bgs. (35) and (48).]
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APPENDIX E

ADDITIONAL DECAY CORRELATIONS WHEN TWO UNSTABLE PARTICLES AR® PRODUCED
AND DETERMINATTONS OF PARITY AND SPIN OF SECOND PARTICLE

o now consider the reaction

T+ 7p > X+ B

(m.1)

I

where B has spin £. In this casc, the density matrix for X depends upon

(X-B spin-spin correlations). It has the form (53) with L' =0,2,...,2¢.

G P
KK (1,1’ )

The matrices p

, () a(L’ M) (' ,u) (T ,u")

-Psing b +P cos ¢ ¢ (E.2)

when the target is polarized [scc Scetion VII; particularly, Lgs. (59)

and (60)]. The corresponding multipolc paramcters of X arc given by

Lg. (39).

The production matrix clements Srgfz?a (-e$m<e, -JEpsd, a = %)
3

12
obcy

s(8) (o) = (ot ) (9) (3.3)

muoz

when parity is comscrved (n = product of intrinsic paritics). To scc how 7
may be determined. onc follows thc same procedurc as in Scction VII. Tor

cach u and |m|, from Bq. (E.3), ﬁr&x:t) =0if @ = 5 or -'4. Using Eq. (D.6),
J

lct (note °r = dL = 0 for L odd)

— \ AN
] fanea) )N :m0) = ng;gg 0 _ s
o L%ﬁjﬁ]L C(2Le3m0) n e Trace T, = 8 o
m

(B.4)

dy, = i ?2111 JT (=)™ c(eLe;mo)

m
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and from the matrices

NOE I a OO
A=a®lpn s ZiJ 5

muze Cmp’ jo
20 1 (E.5)
%b@m%BW ZJ(P gb xxé)éw
L=0

Then the analogue of Bq. (64) is

L

 Traco (%TM L) = (=)’ 7 Trace <AYTM > . (E;6)

The samc reasoning as yields Eq. (72) gives

L (i 7
<-) nP = Z (< gf >I‘igh‘t— <gf >1Gf’t) ) (3‘7)
where f is given by Eq. (73) and
24 .
L+ L
e= ) a4 <= — j @ (oo 0500 0) (.8)
L -
L=0

Many additional rclations, like Eq. (75) for cxamplc, may also bc obtained

for this casec.

The dependence on £ of-the rohes. of Eq. (B.7) [and other such
relations obtainable from Bq. (E.6)] shows that thc value of £, if it is
not known, may also bc obtaincd from studics of right-left asymmetrics

in Bq. (E.1) with polarized target

I

< £J’”>Jr'ig1'1t" €7j0rt ST nP< hi'>
29 _
= :-\ CL [‘%LQJ_D (L)(q)K’ K’ 0) =1 i
[ ™ eL

=0

65/1316/10

p/mm



REFERENCES

1) R. Gatto and H.P. Stapp, Phys.Rev. 121, 1553 (1961).

R.H. Capps, Phys.Rov. 122, 929 (19673 ‘

. Byers end S, ¥enster, Phyd.apv thors 11, 52 (1963).

S. Fonster, Thesis, UCLA (1964). '

M. Adecmollo and R. Guuto, Phys.Rev. 133, B 531 (1964).
‘Thoro arc many papers in the literaturce reporting particular

‘clations. A nore complete bibliography may
bo found in the last roforcncc mont ioncd hore.

2) Sce, ¢.3., U. Frann, Revs. lodern Phys. 29, 74 (1957).

3) Such paremecters, often called statistical tcnsors, arc familiar
objects in nuclcar physies; scc, C.8., '
5. Devons and L.Jd.C. Goldfarb, Handbuch der Physik 42, 8L (1957)°

4) These paramcters were first discusscd for J = "% by
T.D. Lec and C.N. Yang, Phys.Rev. 108, 1645 (1957), (mote ay =-a
of this paper). TFor J = 'k, our Jnflnltlon of a,f, v 478 the
measursd quantities reported for A decay by '
J.W. Cronin and 0.E. Overscth, Phys.Rev. 129, 1795 (1963) and
discusscd for = dccay by
D.D. Carmony ¢t al., Phys.Rev. Letters 12, 482 (196L).
5) Sec o5 R.K, Adair and E.C. Fowlcr, "Strangc particles",
rsecicnce Publ., New Vork (190%)
6) H.H. Joos, Tortschritte der Physik 10, 65 (1962); scc also
C. Henry and E, de Rafacle, "Relativistic thoory of angular
corrclations in successive twe-body decays of unstablc particles",
Preprint, Institut des Hautes Etudes Scientifiques, Bures-sur-Yvette.

7) Bquations (5) and (6) differ in notation only from Egs, (11)- (16) of
Bycrs and Fenster [Ref. 1)].  Note that Byop = = B

8) T.D. Lee and C.l. Yang, Phys.Rev. 109, 1755 (1958).

9) Sco, ¢.8., HE. Rose, "Elomentary theory of angular momentum".
J. THley and Sons, New York (1957).

10) Thc notation herc is as on page 52 of Ref, 9).

11) Tith this normalization

J25+7 P, (szﬁ’r’fT))

L i T
Nl s NP
“ﬁﬂﬁ1)” | Qm@+1QJ
-J

I

Il

where PL is the th Legendre polynomial.

65/1316/10

p/mm



/

65/1316/10
p/mn

L)
15)

16)

18)

19)

25)

26)

- 148 -

L. Bohr, Nuclear Phys. 10, 48€ (1959).

Relations (38) were reported by S. Berman and H. Veltman,
CERN preprint, for thoe donsity matrix of N* in the rcaction
vt p > ¥+ T

M. Jacob and G.C. Wick, Ann.Phys. (W.Y.) 7, 404 (1959).

See, €.8., A.A. Cheskov and Yu.lM. Shirckov, Zh.Eksperim.i Teor.Fiz. 42,
144 (1962); English translation;Soviet Physics~JETP 15, 103 (1962);
also Ref. 6). -

Uxplicitly, in Iig. (44)

\ZD(j) E.;Z){g)(+ﬂ/2,-+ﬂ/2,ﬁ>

Ac

D= DS aso,ape,m)
x x
Using Eq. (44), onc casily obtains Bq. (48) from corrcsponding
rolations for fkysl given in Ref. 14.) [Eq. (44)].

Sce, Cege, Jeli. Blatt and V,I'. Weisskopf, "Thcorctical nuclcar
physics", J. Wilcy and Sons, New York.

Herc we have used the longitudinal polarization of A to obtain
the tf . Since, t% with K odd give momcnts of both longitudinal
and *ransversc A polarization (scec Table II) altcrnative forms
for £ may bc used. Indeed when Oy, x #£ 0 and Bx-n £ 0, there arc
four such forms. ‘

S.M. Bilenki, Nuovo Cimento 10, 1049 (1958).'
S.L. Adlor and A.S. Goldhabor, Phys.Rcv. Lotters 10, 217 (1963).
K

MK, Gaillard, "idthodcs pour la détermination du spin ct de la
parité dcs résonances®, CERN G4-33 (196k).

S. Fenster (thesis, University of California, Los Angcles) gives
a detailed discussion of thesce quantum numbers. Scc also Ref. 14).

Restrictions on p owing to Egs. (46) and (47) have been given by
M. Ademollo and R. Gatto [Ref. 1)1,

This is, asidc from somc small changcs of notation, the Appendix
to Bycrs and Fenster [Ref. 1)] availablc as a UCLA preprint.

Sce, c.g., P.E. Schlein et al., Phys.Rev. Lettors 11, 167 (1963).
J.B. Shafor and D.0, Howe, Phys.Rov. 134, B 1372 (7664).

H.K. Ticho ct al., Phys.Rev. Letters 12, 482 (1964).



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

